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Schwinger has applied his generalized quantum action principle and the method of thermodynamic 
Green's functions to an harmonic oscillator. He has shown how this technique describes the buildup of cavity 
oscillations in a simple model of the maser. This paper applies Schwmger's technique to multimode cavities. 
The energy, autocorrelation (or coherence), and spectral distribution of individual cavity modes in the steady 
state, their rate of buildup and their response to external signals have been calculated. Conditions for the 
buildup and for the steady state of laser action are stated. It has been shown that the steady-state laser 
radiation in each cavity mode can be described in terms of spontaneous and induced emissions, the latter 
one containing a coherent and an incoherent part. 

I. INTRODUCTION 

TH E technique of thermodynamic Green's func­
tions has been applied extensively in the theories 

of the many-body problem and in quantum statistical 
mechanics.1 A great advantage of this method is that it 
exhibits the structural relationship among various 
quantities very clearly. Thus, it provides an effective 
way to treat different aspects of a physical system by a 
unified approach. The dynamics of the system can be 
derived from Schwinger's action principle.2,3 

Schwinger has applied these methods to a simple 
model of the maser.3 He assumed a single lossless cavity 
mode to interact with a system of N two level atoms in 
complete resonance with each other. The spontaneous 
emission line shape of the atoms was given by a 5 func­
tion. Independently of the maser problem, Schwinger 
has also treated the coupling of an oscillator to a loss 
mechanism.3 One can relax the assumptions of the com­
plete resonance and of the 5-function spontaneous emis­
sion line shape and also couple a set of oscillators to both 
the atoms and a loss mechanism, simultaneously. Then 
one has a model for multimode cavities. This is done in 
the present paper. 

The application of the Green's function technique to 
this problem is logical. One is treating a many-body 
problem in which photons interact with atoms. Since 
one starts from first principles, intuitive extensions of 
concepts applicable to the radiation of single atoms are 
not necessary. The extension of such concepts ought to 
be justified. The separation of the radiation of the TV-
atom system into spontaneous and induced parts will be 
a natural consequence of the theory. The various 
quantities described in the abstract will be obtained as 
we go along without having to plan individual methods 
for their calculation. 

The present work is related to that of Senitzky,4 and 

*This work was done while the author was at American-
Standard, Research Division, Union, New Jersey. 
^ l See, e.g., Leo P. Kadanoff and Gordon Baym, Quantum Sta­

tistical Mechanics (W. A. Benjamin, Inc., New York, 1962), where 
references to the literature can be found. 

2 Julian Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). 
3 Julian Schwinger, Brandeis University Summer Institute in 

Theoretical Physics, 1960 (unpublished); J. Math. Phys. 2, 407 
(1961). 

of Wagner and Birnbaum.5 These authors do not apply 
Schwinger's method, but share some of our interests. 
Senitzky's work is, however, restricted to single mode 
cavities. Wagner and Birnbaum only treat the steady-
state radiation. 

We thought it useful to briefly summarize Schwinger's 
technique in this paper. This is done in Sees. IV-VI. 

II. THE MODEL OF THE MULTIMODE CAVITY 

The transverse field in cavities can be represented in 
terms of harmonic oscillators. These harmonic oscil­
lators are not free, but interact with two external sys­
tems. One of these systems consists of the resonant 
atoms which produce the cavity radiation. The other 
one is the loss mechanism. This may consist of the walls 
of the cavity and of the external space to which the 
radiation is coupled out. 

The resonant atoms may have an arbitrary number of 
energy levels which are indirectly involved in the pro­
duction of cavity radiation. We assume, however, that 
there are only two levels, an upper and a lower one, be­
tween which the radiative transitions take place. 

The resonant atoms, besides being coupled to the 
oscillators, may also be coupled to one other system. 
This latter interaction may determine the electronic 
current autocorrelation in the atoms. We assume that 
this interaction provides an exponential relaxation 
mechanism for the current autocorrelation in the atoms, 
which leads to a Lorentzian spontaneous emission line 
shape. An example for such a mechanism is provided in 
the case of a solid-state laser by the interaction of the 
active impurity atoms with the host lattice. (If more 
than two levels are involved in the resonant radiative 
transitions, the Lorentzian spontaneous line shape can 
be masked by the energy distribution of upper and lower 
energy level groups.) 

The spatial distribution of the resonant atoms is as­
sumed to be random. If the coupling of the oscillators to 
the loss mechanism is not too strong, the oscillators can 
be treated as independent of each other. 

4 I. R. Senitzky, Phys. Rev. 127, 1638 (1962). This paper refers 
to Senitzky's earlier work. 

5 W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185 
(1961). 
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III. THE LAGRANGIAN OF THE FORCED 
ELECTROMAGNETIC OSCILLATORS 

The transverse electromagnetic field in the cavity, 
represented by the vector potential (A), interacts with 
the transverse components of the current (jy). This 
situation is described by the wave equation 

1 d2A(r,t) AT 
V 2 A ( r , 0 = - j r ( r , 0 . (3.1) 

c2 dt2 c 

Both vector functions can be decomposed into ortho-
normal series: 

A(r,*) = c2Lx<Zx«/x(r)ux (3.2) 
and 

j r ( r , 0 = — E i x W / x W u x , (3.3) 

where the summation over the wave vector X is under­
stood to include summation over the transverse polar­
izations. The /x(r) are orthonormal functions which 
represent the cavity modes. q\(t) and j\(t) are the 
corresponding time amplitudes. The U\ are unit vectors 
orthogonal to X. The wave equation can be replaced now 
by 

gx«+cox2gx« = jx(0. (3.4) 

There are two such equations for each wave vector. 
The equations above do not take into account that 

the cavity is filled with a solid. This can be helped by 
multiplying the first term in Eq. (3.1) and the right-
hand side in Eq. (3.3) by the square of the refractive 
index. In this way Eq. (3.4) becomes valid also for the 
solid. 

The Lagrangian of the equations of motion for the 
forced electromagnetic oscillators is 

^ = Z x C K ^ x 2 - c x V ) + ^ x i x ( 0 ] . (3.5) 

There are various possibilities concerning j\(t). I t may 
be necessary to add the Lagrangian of the current 
carrying system to the one above and consider the 
entire dynamical system as one unit. The j\(t) may also 
be known functions of time. Finally, the correlation 
functions of the j\(t) may be known functions of time. 
We will only consider the last two possibilities. 

Let us assume that there are two kinds of currents. 
One kind is a known function of time and its amplitudes 
will continue to be denoted by j\(t). The other kind is 
determined by its known correlations and will be de­
noted by the J\(t) time amplitudes. Thus the Lagrangian 
is 

^ = Z x [ | ( g x 2 - c o x V ) + ^ x i x W + g x / x ( / ) ] . (3.6) 

IV. THE QUANTUM ACTION PRINCIPLE 

The general dynamical problem can be formulated 
and solved in the framework of Schwinger's quantum 
action principle which involves the technique of thermo­

dynamic Green's-functions.3 The transformation func­
tion for the closed time path fa —> h —-> fa is 

(h | h)e0=II (1 ~ e-*w^°)I>x/21 »x^ x ± ^" n x * a x / , ° , (4.1) 
X »x 

where 
p0=l/kT0=l/eQ. (4.2) 

This transformation function refers to the assembly of 
oscillators, each at the same temperature To at the 
initial instant fa. The external forces F\ might be 
different in the forward transformation fa —> fa from 
those in the backward transformation fa-* fa. These 
forces are F\+ and F\-, respectively. For the system 
under consideration these forces originate from the ex­
ternal currents. The n\ represents the energy states of 
the oscillator by indicating the number of photons in it. 

Let us supply the interaction terms in the Lagrangian 
with an adjustable factor a, such that for a= 0 we have 
free oscillators, and for a= 1 the actual physical situa­
tion is restored. Thus the Lagrangian appears in the 
form 

£ = Z x H ( « x 2 - c o x V ) + « g x i x ( 0 + a g x / x ( 0 ] . (4-3) 

The action principle then states that the variation of the 
transformation function over the closed time path is 

5(fa\fa)=-(t2\dn dtL+J-d(j dtL-\\h), (4.4) 

where L+ and Z_ may differ because q\, j \ , and J\ can 
be different on the positive and negative segments of the 
transformation. If the variation is with respect to a then 

d i rtl 

—<fe|/2>*oa=-<fe| / * n {«x[ ix(0+A(*)] | + 
da h J t2

 x 

-?xD'x(O+A(0]|-> I <*>*«• (4-5) 

The transformation function has to be evaluated for the 
initial thermal mixture and a = l will reproduce the 
actual physical system. One may try to approximate 
this expression by replacing the current time amplitudes 
by their expectation values. This is a satisfactory pro­
cedure for j\(t) which is externally imposed and is a 
known function of time. J\ (t) is only statistically known 
and its expectation value is zero independent of L (A 
possible additive constant would cause trivial complica­
tions.) The next approximation then leads to 

d2 

—(h\fa}eQ
a 

da2 

1 /•*! 
= (h\Jl / dtdt'{[qxJ\(t)qxJx(t')']++ 

+ tqxJx(t)qxJx(01—-&x/x(0J-&x/x(Ol-

-tqJx(t')l-tqMn+}\h), (4.6) 
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if the external currents j\(t) are sufficiently weak to be 
neglected here. We will neglect crosscorrelations be­
tween modes and have, therefore, immediately replaced 
the double product by a single one. The consequences of 
this procedure will be examined in Sees. V and VI. The 
justification will follow in Sec. VII. The first term con­
tains both t and t' on the forward segment of the trans­
formation and is positively time ordered. The next term 
is negatively ordered because both times are on the 
negative segment. The last two terms are equal but 
symmetrically written. One time falls on the positive 
and the other one on the negative segment. The ordering 
is by the segment and not by the values of / and tf in 
these terms. The positive segment is first. 

The expectation value of the second variation includes 
the current correlation components 

^x + + 0-O=-(C/x(0 /x( i ' ) ] + + } , (4.7a) 
n 

Jx— 0-*') = -<[/x(/)/x«')]—>, (4.7b) 

A^(t-tf)^-(JUtV^{t)), (4.7c) 

A^+{t-tf) = -{JUm+ (?)), (4.7d) 
% 

which we assume to depend only on (t--t'). 
The effective action operator, which reproduces the 

first and second derivatives of the transformation func­
tion with respect to a and the equations of motion of free 
oscillators for a= 0, is 

W=T, 1 f l rfO(«x2-oxV)+«3xix(01 + - « W \ ( 0 1 - ] 

+-c? f fdtdt'lq^t)qx(.t')-]+Ax++(t-l') 
2 J <2 J h 

+ Zqx(t)qx(n^Ax^(t--tf)-qx-(t)qx+(n 

XA^+(t-t')-qx-(t')qx+(t)Ax+„(t-t')\ . (4.8) 

particular is valid in solid-state systems and will be 
discussed in Sec. VII. 

V. THE EQUATIONS OF MOTION. 
GREEN'S FUNCTIONS 

The equations of motion which follow from the 
principle of stationary action are 

(^-+^q+(t)-if l dtU++(t-Oq+(t') 

and 
- i i + - ( * - O * - ( O ] = i + ( 0 , (5.1) 

/d2 \ r* 
( —+o)o2 k - ( / )+ i / dt'[_A-.-(t-tf)q-{t') 
W / Jt2 

- ^ - + a - O g + ( O ] = i - ( 0 . (5.2) 

We have one such equation for each oscillator. The index 
denoting the oscillator has been dropped, the oscillator 
eigenfrequency is described by the generic notation o?0 
and #= 1 has been substituted. 

The thermal time boundary conditions at the initial 
time h are 

& 
(q++q-.)(t2) = i/o)o coth(|/30^co0)—(g_-g+)| tm,h, (5.3) 

dt 
and 

dt 
(q++q~) | t-H= —i/uo coth(i/30^co0) (q~—q+) {h). (5.4) 

The difference variables do not necessarily vanish due 
to the difference between j+(t) and j-(t). The continuity 
of the two time segments at h yields the boundary 
conditions 

fe--«+)(/i) = 0, (5.5) 
and 

d 
—(«-—ff+)l*-*i=0. (5.6) 
dt 

The equations of motion may also be expressed in terms 
of the difference and sum variables in the form 

(s4**)*--
Instead of utilizing the Lagrangian Eq. (3.6) the rest 

of this paper will be based upon the effective action 
operator. In replacing L by W a number of fundamental 
assumptions are made: (1) The external currents j \ are 
so weak that it is sufficient to consider them only to first 
order in the coupling constant. (2) The J\(t) currents 
are sufficiently weak to consider them only to second 
order. (3) The various current correlations A\ are not 
appreciably effected by their coupling to the oscillators 
and depend only on (t—f). The last assumption in 

q+){t) 

dt'Aa(t-t')(q--q+)(t')= (j--j+)(t), (5.7) 

and 

(-+coo2) (?-+?+) ( 0 - f dt'Ar(t-t')(q++qJ)(t>) 

+i[ dt'a(t-t')(q--q+)(t')=(j++jJ)(l), (5. 8) 
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where 

• / / 
J H J H 

drdr'Gr{t-r)a{T-T')Ga{T'-t') 

Aa(t-n=>x.A+-(t-n-A—(t-ni, (5.9) 
Ar{t-t') = itA++{t-t')-A+-{t-t')1, (5.10) 

a(t-e) = A+-(t-t)+A-+(f-f) (5.11) 
are the advanced, retarded, and symmetrical current 
correlation functions, respectively. The solution of the 
difference equation can be exhibited in the form 

(«--&.)(/) = I XdfGa(t-f)U--J+Ht'), (5.12) 
J h Had the crosscorrelations between modes been included 

i n /* J\ ^ i J ^ 9 r • .r. in Eq. (4.6), the A's in Eq. (4.7) would be matrices where Ga{t—t), the advanced Green s function, is the . , j . *. , , , -r, x. , e ^ / e 0\ v ^ including nondiagonal elements. Equations (5.1), (5.2), 

l " ra a 
+-COth(^0fe0) —Gr{t-h)—Ga{h-tf) 

+0)o2Gr(t-t2)Ga(t2-t' 4 (5.19) 

solution of the equation 

( — + c o 0
2 j G a ( / - 0 - I drAa(t~r)Ga(r-n 

and 
= 8(t-t') for /< / ' , (5.13) 

G«(*-/') = 0, for /> / ' . (5.14) 

(5.7), and (5.8) would show that the different modes are 
coupled. The Green's function Eqs. (5.13) and (5.15) 
would also show this property. Thus, the neglect of 
crosscorrelations reduces the multimode problem to a 
series of single-mode problems. 

VI. EXPECTATION VALUES 

If the expectation value of the quantity in (4.5) is 
This satisfies the time boundary conditions at t= h. The written in terms of the sum and difference variables 
retarded Green's function is defined by the equations . n 

—(t2\t2)e0
a=-^-(t2\ f ^ I I [ ( ix~- ix + ) (^ + +gx- ) 

da 2fl J u x (—+uAGr(t--f)-[ dTAr(f-T)Gr(T-t') 

and 
= 8(t-t') for t>t' 

G r ( / - O = 0 for t<tf. 

It can be shown that 

Gr(t-t') = Ga(t'-t). 

The solution of the sum equation which satisfies all the 
time boundary conditions of Eqs. (5.3)-(5.6) is 

(5.15) 

(5.16) 

(5.17) 

+ (jx++j\-)(qx--qx+)l\h) (6.1) 

is obtained. Since crosscorrelations between modes are 
neglected, the transformation function of a set of 
oscillators is simply a product of the transformation 
functions of the individual oscillators. Thus, dropping 
the index X, for each individual oscillator we have 

d 
—(t2\t2)eQ«=-—(t2\ I dl(j--j+)(t)(q++qJ)(t) 
da 2fi Jh 

• / . 

+ (j++jJ) (0 (q_-q+) (/)] | h). (6.2) 

Equations (5.12) and (5.18) have to be substituted 
here. Since the full coupling is not operative, both of 

(1 these equations must be supplied with a factor a on the 
;f w(t-h, t'-k)U--j+)(t')dl', (5.18) right-hand side. An integrable expression is obtained 
J h with Eq. (5.17) which leads to the integral 

= / dt'Gr(t-t')U++j~)(t') 

(h\h)e0=exJ-— f f didt'U--j+)(t)Gr(l-t')(j++j-)(Oj 

Xexp|" f j dm'(j-.-j+)(t)w(t-t')(j--j+)(t')J (6.3) 

for the effective transformation function, with a = l . is obtained. The first variational derivatives of the last 
With the aid of Eqs. (5.12), (5.17) and (5.18) again two equations with respect to (j-.— j+)(t) reproduce the 

two sides of Eq. (5.18). For (j-— j+)(t) = 0ihe expecta-

/

<i tion value for the oscillator response to external current 

2 o(0= f Gr(t-t')j{t')dt' (6.5) 
x<r-w*K/++y-xo(9— «+><o|̂  (6.4) y _ 
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is obtained. The second variational derivates of the 
same equations, evaluated also at (j-—j+)(t) = 0 lead 
to the symmetrical autocorrelation6 of the oscillator 
coordinate 

[?W,g(0]+=M*--*2, t'-t2). (6.6) 

It is to be noted that the coupling of different modes 
would lead to crosscorrelations between the various 
modes. 

VII. CORRELATIONS IN THE EXTERNAL SYSTEMS 

The general method of the last three sections becomes 
applicable to multimode cavities if the external systems 
are identified with the resonant atoms and the loss 
mechanism, respectively. The retarded and symmetrical 
current autocorrelations in these systems must be 
determined. 

Let us start with the atoms. The correlation functions 
required are of the form 

< / X ( 0 A ' ( 0 H ( - ^ ) f f /x(r)/v(r') 

X((nxJ r(r,0) (nx J + ( r ' / ) ) > ^ V . (7.1) 

If the atomic system is isotropic, the wavelength is long 
compared to the size of the atoms, the current correla­
tions are localized within the randomly distributed 
atoms and different modes are uncorrelated, then 

/47T\2iV 
< A ( 0 / x ( O > = ( - ) H M r , 0 / r ( r / ) > , if X=X' 

\ c / V 

= 0, if X#X'. (7.2) 

N/V is the number of atoms per unit volume and the 
expectation value refers to the current correlation be­
longing to any one of the polarizations within any one of 
the atoms. Different modes are, in fact, uncorrelated. 
This follows from the random distribution of the atoms 
and the orthogonality of the modes.5 

No attention has been paid to time ordering yet. The 
four possible orders of time were exhibited in Eq. (4.7). 
In order to construct Ar(t—tr) and a(t—tf) we seem to 
need three of these. Since 

A++(t-t') = A-+(t-tf) f°r / > / ' , (7.3) 

we may write 

Ar(f-f) = i(A-+(t-f)-A+-.(t-tf)) for t>t', 

= 0 for t<tf, (7.4) 
and 

a(t-t') = A+-(t-t')+A-+(t-t'). (7.5) 
Thus it follows that A+- and ^4_+ suffice. We have to 
evaluate them now. The calculation is described in 
Appendix 1. The physical picture is the following. 

6 The word "symmetrical" will later be dropped when it cannot 
lead to confusion. 

The active atoms interact with two systems: (1) the 
solid, and (2) the cavity oscillators. Each atom in the 
solid suffers a thermal phonon collision about every 10~12 

sec. This time is orders of magnitude shorter than the 
time of an electromagnetic transition. The phonons 
leave the average populations of the electronic states 
invariant, they only randomize the phases of the elec­
tronic state vectors very rapidly. The cavity oscillators 
have just the opposite effect. They cause transitions 
between the electronic states but change the phases of 
the electronic state vectors slowly. The effect of the 
transitions is offset by some external pumping mechan­
ism which keeps the electronic state populations con­
stant over the ensemble of active atoms. The phase 
changes caused by the oscillators are entirely negligible 
compared to the randomization of these phases by the 
phonons. Thus the cavity oscillators have no net effect 
on the atomic ensemble, as it was anticipated in Sec. 
IV. The atomic current autocorrelations can be calcu­
lated from the interaction of the atoms and the solid. 
The results are 

^ + - (^0=( l /*) (Wc)W/F|< | j r |> |»[ | f l 1 1 | 2 i r^<«- ' > > 
+ \ai\2eim(t-t>)y-mt-ni (7#6) 

and 

^y-+(/«O=(l/*)(Wc)W/7|<|7V|>p[|a l l |2^0i(*-«') 
+1 ai| 2^-«i(*-«')]^-*n *-t'\. (7.7) 

The subscript N signifies that these quantities refer to 
the N atoms. The squared matrix element refers to the 
current transition matrix element for one polarization in 
the atom between the upper and lower levels, with 
amplitudes au and a j , respectively. | au 1

2+ | at 1
2== 1 for 

two level atoms and possibly smaller for more levels. 
\du\2 and | ai|2 are assumed to be constants. The energy 
difference of the two states is Mli. The decay of the 
current correlations is exponential and has the reciprocal 
time constant T/2. The retarded and symmetrical 
correlation functions are 

ArN(t-t')=mX^/cnN/V)\{\j\)H\a^-\a^) 

Xe-*r<<-*0 for / > / ' , 

= 0 for t<t', (7.8) 
and 

X[e^i(<-'0+e-iOi(*-*')]e-*ri t~t'\ (79) 

for the atomic current. 
Under appropriate circumstances, specified by Sch-

winger,3 the effect of the loss mechanism can be repre­
sented very simply. The retarded current correlation 
function is effectively equal to the damping constant y 
multiplied by the time differential operator and is local 
in time. 

ArL(t-lf) = yd(t-f)d/dt; for t>t', 
= 0 for t<t, (7.10) 
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where the subscript L indicates the loss mechanism. The 
symmetrical correlation function is 

aL(t-t') = aL5(t-t'), (7.11) 
where 

7 = §0j£tanh (§Scoc0z,)/«o] (7.12) 

and /3L is the temperature of the loss mechanism. These 
approximations describe the motion of the oscillators 
near their eigenfrequencies adequately. We note that y 
and ah are also generic notations and may have different 
values for different oscillators just as co0 has. 

VIII. DETERMINATION OF THE RETARDED 
GREENE FUNCTION 

The retarded current correlation Ar{t—r), which 
appears in the equation for the retarded Green's func­
tion (5.15) is the sum of the corresponding quantities 
for the N atoms (7.8) and the loss mechanism (7.10). 

Ar(t-r)=^(i/h)(iWcm/V\(\j\)\^\au\'-\a^) 

^ L i 2 i ( N | g - » 8 i ( « - T ) l 

Xe-^-^+ydit-r)—, for t>r; 
dr 

= 0 for t<r. (8.1) 

The equation for the retarded Green's function (5.15) 
then appears by the substitution of (8.1) as 

i / 47T\ 2 
/dl d \ i/47rV 
( —+7-+CO02 )Gr(t-0—( — 
\dt2 dt / tiKc/ 

x^KM>|2(W2-kl2) 
oo 

X f ^+(*-T)[> f f l^-T>+e- i Q l< (- r )] 
J —oo 

Xe~^t-^Gr{r-tf)^b{t-tf) for />* ' , (8.2) 

and 
Gr(t-t?) = 0 for t<t- (8-2a) 

The definition of rj+(t—r) is 

7]+(t—r)=l for t>r, 
= 0 for t<r. (8.3) 

The solution of the differential equation can be obtained 
by Fourier transformation which is defined by 

/G0= f d(t-t')e^-*y(t-t') (8.4) 
J —oo 

1 /•-
' ) = - / dte-w-vjQ;). (8.5) 

Exponentially increasing functions of (t—tf) are allowed 
by supplying f with an appropriate positive imaginary 
part. The transform of Eq. (8.2) is 

-£*-*#+««•-
QiV 

Qi , + ( r / 2 ) * - . T f - r 
;]GG-) = 1, (8.6) 

where 

^(im(Wcn2N/V)\(\j\)\^\au\'-\a^y-.(S.7) 

The quantity /x characterizes both the strength of the 
coupling of the atoms to the oscillators and also the 
inversion. The coupling of the oscillator to the two 
systems modifies its frequency to a small degree. We 
imagine that co0 embodies this change. We maintain the 
assumption that the upper and lower level occupation 
probabilities \au\

2 and \ai\2 are constants. G(f) can be 
expressed in the form 

G(0 =[-r2-;< O^+coo2' 
OiV 

Gi'+Cr^-flr-r 
— 1 '• <8-8) - f 2 J 

We find in Appendix 2 that the four poles of G(f) are 
approximately given by 

f==fcG- (* /2 ){ i (7+r ) 

±CM 2 +(7- r ) 2 /4 - (co 1 -co 0 ) 2 ] 1 / 2 } , (8.9) 
where 

ti=+LUuo2+o>mf2 (8.10) 
and 

<*i=+LQi2+(T/2)*J**. (8.11) 

The approximation is based on the assumption that 
fiy 7, T and | coi—o?o | are all much smaller than coo and coi. 

The Fourier transformed Green's function can be 
exhibited in the factorized form 

G(r)=(col
2-^rr-f2)/n(f-ri), (8.12) 

and 

f(t-t 

where the fi are the four poles. The inverse transform is 
determined by 

2TTJ 

n(r-r*). (8.13) 
i=i 

The integral should be nonzero for t>t'. The integrand 
will not diverge over the infinite semicircle completing 
the path if it is taken in the lower half of the complex 
f plane. Thus the contour integral runs counterclockwise 
parallel to the real axis above the poles and is closed by 
this semicircle. For t<tr the advanced Green's function 
differs from zero. In this case the contour runs parallel 
to the real axis below the poles and the infinite semi­
circle lies in the upper half of the complex f plane. Using 
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Cauchy's theorem we obtain, approximately, 

sinft (£-*') 

ship is equivalent to 

G r(*-*') = l+(*-* ' ) -
20 

±rM+r_ 

where 

and 

_e<-r+±rM)(*-n? (8.14) 

r+=i(r+7), r_=i(r-7) (8.1s) 

x E 
±rM ± r M 

TM= + D V + ( M / 2 ) 2 - i 7 r - (coa-coo)2/^]1^. (8.16) 

The approximation in Eq. (8.14) is based on the same 
assumptions as those that led to Eq. (8.9). For coi=co0 

and 7 = r = 0 the retarded Green's function becomes 
identical with the one given by Schwinger.3 The re­
tarded Green's function is related to a kernel used by 
Senitzky7 with cox=coo and r = 0. 

IX. THE RESPONSE OF AN ELECTROMAGNETIC 
OSCILLATOR TO CURRENT 

The response of an electromagnetic oscillator to cur­
rent was given in Eq. (6.5) in general terms. Suppose the 
current time amplitudes are Fourier analyzed and can 
be exhibited in the form 

i ( 0 = EO'o ' sinft 'H-jV cosft'/) for / > 0 

- 0 for *<0. (9.1) 

We compute the average response to one particular 
component, sin (ft'/), with the retarded Green's function 
given in Eq. (8.14). The average response is found to be 

Jv 1 ±rM+r_ 
< ? ( ' ) = — E 

4ft ±r> (o-i2,)2+(~r+±rM)2 ±rM 

X {(ft-f t ' ) [smft ' / - sinfite'-r+W«] 

+ (-r+±rM ) [cosl2 , / -cosf i^ ( - r + ± rM> f ]} for *>0 

= 0 for *<0 . (9.2) 
This expression contains a Lorentzian resonance de­
nominator as a function of the forcing frequency ft'. As 
a function of the frequency ft of the combined system, 
the denominator is not Lorentzian. TM and 1\ are 
functions of the parameters coo and y which vary from 
one oscillator to another. Thus we have a variable 
width. 

The oscillator response contains two kinds of periodic 
terms with the frequencies ft' and ft, respectively. The 
latter kind contains two exponential factors. One of 
these can be built-up, constant or damped, depending on 
whether 

(9.3) r„|r. « < i + i 

and the other one is always damped. This last relation-
7 1 . R. Senitzky, Phvs. Rev. 123. 1525 (1961). 

S%yT+ (cox-coo)2 (9.4) 

A part of the response is thus built up if the strength of 
the atomic-oscillator coupling and the atomic inversion 
can overcome the joint effects of the atomic and 
oscillator dampings and of the imperfect resonance be­
tween the atoms and the oscillator. The built-up part of 
the response has the frequency of the combined atomic-
osciilator system and not that of the forcing current. If 
there is no buildup, the response tends to a constant 
amplitude as t —* <x> with the forcing frequency. Thus a 
steady state is reached. If the equality in the last 
relationship is satisfied one finds asymptotically that 

ja> T 1 
q(0=: — Zr~Z—~(sinfl'/-sinflO, for 2--»oo . (9.5) 

2ft T+7S2-S2' 

TM term would This contains only the +TM term. The 
add a steady-state type of an expression. The part 
exhibited above oscillates with a small frequency at 
great amplitudes. For the resonant case ft' = ft a linear 
increase 

?(0=(io/2n)(r/r+7)*, for t-*«> (9.6) 

is obtained. 
The possibly very great response to external current 

at the frequency ft is a consequence of the instability of 
the system at large inversions. This response is similar 
to the build-up obtained in the absence of external cur­
rents, as we will see in Sec. XL There the buildup will 
be a consequence of current fluctuations in the atoms 
and in the loss mechanism and of the initial fluctuations 
in the cavity field. The rate of exponential buildup will 
be found there to be twice as great as it is here. 

The response at the frequency ft' of the current does 
not contain an exponential term but is purely periodic. 
Nevertheless, a great amount of energy can be coupled 
out of the cavity at this frequency under favorable 
circumstances. The amplified energy coupled out from a 
mode increases with 7 and with the squares of the 
amplitudes of the periodic factors in Eq. (9.2). This 7 
includes the effect of both the wall losses and of the 
coupling out of the energy. 7 can be increased arbitrarily 
and still get amplification as long as the amplitude 
factors do not decrease. This can be achieved by in­
creasing the inversion to keep the balance. Note, how­
ever, that the amplitudes themselves cannot be arbi­
trarily increased by increasing the inversion. This would 
lead in the limit to TM—>oo and the amplitude would 
vanish. 

The buildup has to cease eventually when the popula­
tions get adjusted at such a level that T M < r + for all 
modes. Then, after the transients have died out, only 
the ft' frequency terms are present in the response and 
the amplification appears all by itself. If TM is only 
slightly smaller than T+ only few oscillators, with 
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coupled system frequency 0 close to 12', will respond to 
the external current. 

X. CALCULATION OF THE OSCILLATOR 
AUTOCORRELATION FUNCTION 

The oscillator autocorrelation can be computed by 
using Eqs. (6.6) and (5.19). Gr is given in Eq. (8.14). Ga 

is determined from Eq. (5.15). The symmetrical 
autocorrelation of the external systems is given in Eqs. 
(7.9) and (7.11). We will use the notation 

a w = ( l / * ) ( 4 x / C ) W / 7 | < | i | > | * ( | a » | » + | a I | » ) (10.1) 

as the constant amplitude of the atomic correlation. 
The oscillator autocorrelation can be exhibited as a 

sum of three terms which originate from the autocorrela­
tions of the loss mechanism (WL), of the atoms (WN) and 
the initial oscillator autocorrelations (wo), respectively. 

W(t—t2, t' — /2) = ^ L + W i \ r + W o . (10.2) 

Cumbersome elementary calculations lead to the follow­
ing lengthy results. The term originating from the loss 
mechanism is 

_j_p + r _ \ 2 g(-r+±rM)(«'-o_e(-r+±r>)(*+«') ( /±rM+r_v 
wL(t,t')= (aL/16&) c o s Q ( / - / ' ) Z 

± r M i \ ± r M / 
(d=r )2—r_2 e~v+{'t,'~t)—-e_r+(f+r) 

+ — 
(±r„)2 r , 

The atomic contribution itself is best exhibited as a sum 

€±iV( * - « ' ) . f o r ^ > ^ » o - i . (10.3) 

(10.4) 

The subscripts refer to the signs of T^ in this formula. WN+ + contains both IV s with positive signs, WJV has both 
with negative signs and WN+ - has them with mixed signs. We find 

aN /±r M +r_\ 2 

16£22 ±r„ ± Q \ ±TIX 

XI f -

, ( - r+±r>) {tf-t)_ e{-v+±Yy) (t'+t) 

2(r+TrM) 

l n 

and 

aN i y - r _ 2 

16£22 rM
2 ±r„ ±o 

X 

i(Qi-i2)+r+=FrM+r/2 =Fi(o-o)+r+=FrM-r/2J 
e(-T+±TIM) « ' e[±i(Qi-«)-r/2] t_e(-Y+±Ttl)(t+t') 

[dzf(Oi-o)+r+TrM-r/2][=Fi(Oi-o)+r+=FrM+r/2] 

e[T t(Qi-Q)-r/2] (*'- o _ e[=F i(0i-n)-r/2] *'e(-r+±rM)« 

[d=i(o1-o)+r+=FrM+r/2][Ti(^i-o)+r+=FrM-r/2] 
; t'>ty>$rl (10.5) 

2r4 

r — -
L=Fi(fii-12)+r+z 

1 

f ± i y f r / 2 qFi(Qi-o)+r+±rM-r/2J 
e[T t(Qi-o)-r/2] (*'- o _ ep= *(Qi-Q)-r/2] *'e(-r+±rM) t 

[±i(i2i-Q)+r+=FrM+r/2][=Fi(i2i-i2)+r+TrM-r/2] 

e[+t(Qi-Q)-r/2] ̂ (-r+Try ^ — g-r+c^+iO^r^c^-f) 

C±i(i21-fi)+r+=Fr / t-r/2][=Fi(o1-o)+r+±rM+r/2] 
; tf>ty>Qrl. (10.6) 

These expressions are real despite their complex form, interchanged. The summations over 2 and T^ are inde-
We have chosen f>t even though really WN is symmetri- pendent of each other and allow four distinct sign 
cal in t and t\ For t>tf the roles of t and t must be combinations. Finally the original atomic autocorrela-
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tion is given by 

cosQ (*-*') 
Wo(t,t') = coth(|/30fooo) 

f/±rM+r_\2 

± r , l \ ±T M / 

r 2—r_2 i 
_|—- e-r+(H-«')e±iV(*-i') I . 

r M
2 J ' 

t,t'y>QrK (10.7) 

We have neglected the difference between coo and 0 in 
the last expression. We have everywhere taken the 
initial time ̂ 2=0. 

The oscillator autocorrelation must be investigated 
separately for the three possibilities shown by (9.3) 
or (9.4). 

We will find that for r A > r + the energy of an oscil­
lator will increase in time (Sec. XI) . This buildup cannot 
continue indefinitely. Eventually the atomic popula­
tions must adjust themselves such that T M < r + and 
further buildup will cease. The atoms will still transfer 
energy to the oscillators but this will be compensated by 
the coupling to the loss mechanism. Thus a steady state 
with constant energy will be established (Sec. XI I ) . 
When the autocorrelation for the steady state will be 
examined (Sec. XI I I ) it will be found that this quantity 

We note, as before, that TM and T+ are different for 
different oscillators. Therefore not all oscillator energies 
are built up and not all at the same rate. Besides the 
different rates of buildup, the constant amplitudes also 
bear the mark of resonance. The atomic term shows this 
property but it is naturally absent in the loss mechanism 
and original oscillator correlation terms. Since T M > r + it 
follows that r j t i >r_ and the amplitude of the above 

is damped. There is no contradiction here. The auto­
correlation for the steady state depends on time only in 
the form |/—/' | . The energy is proportional to this 
quantity at 11— t' \ = 0 and thus it does not depend on 
time at all. 

XI. BUILDUP OF THE OSCILLATOR ENERGY 

The electromagnetic energy in one oscillator is given 
by 

E=WcA(q2(t)). (11.1) 

We find from Eq. (6.6) that 

{qKt))=\hw{t-th t-h)\H^. (11.2) 

Thus w(t,t) is proportional to the energy of the oscillator. 
We will write down now the energy of the oscillator if 

T M >r+ long after the interactions with the external 
systems have been switched on. We are interested in the 
asymptotic limit 2(rM—T+)C>>1. 

The loss mechanism term (10.3) in the oscillator 
autocorrelation yields 

aL /rM+r_\2e2(Iv-r+>* 

2(iy-r+)e»i. ( iu ) 

Only WN++ out of the three parts of WN leads to a term 
of comparable magnitude. Thus, asymptotically, 

expression does not vanish. I t certainly is the leading 
asymptotic term. I t is interesting that the three sources 
of the oscillator autocorrelation, namely the loss mech­
anism, the atomic and the original oscillator correlations, 
all contribute to the oscillator energy in the asymptotic 
limit. This is due to the strong buildup in the case 
r„>r+. 

For the special case TA=T+ the energy increase is only 

aN /TM+r_\2 r 1 
16£22\ rM / LrM-r+ ± 

r + - r , ± r / 2 

± (i2!-fi)2+(r+-rM±r/2)2 

(i2x-i2)2+(r+-rM)2-(r/2)2-
+211 : 

±r (0!-o)2+(r+-r,d=r/2)2 . 

; 2 ( r M - r + ) / » l . (11.4) 

Finally the initial thermal fluctuations lead to 

z^o(/,0 = Ccoth(P/3oaJo)/412](rM+r_)2/rMV(^- r+)<; 2 ( r M - r + ) £ » l . 

The sum of the last three equations is 

(11.5) 

i / r „+ i - \ 
i6o2\ r„ / 

aL r 1 
•-aN\ r -E(±) -

r + - r„±r /2 
e2(r„-r+x.l 

„ , i i w v ' Lv.-v+l' "(Oi-o)2+(r+-r,±r/2)2 

+211 
(o1-n)2+(r+-r,)2-(r/2)2-i 

±r (fi!-n)2+(r+-rM±r/2)2 J 
+40 coth(i*0o»o) ; 2(rv-r+)o>i. (11.6) 



A78 G. K E M E N Y 

linear. We obtain 

t /iyfr-yr r -1 
w(t,t) = — • 1 dL+ax ; 

802\ TM / L (Gi-0)2+(T/2)2J 

rM=r+, r /» i (n.7) 

in the asymptotic limit. The initial oscillator correlation 
does not contribute this time. 

Comparing the results of this section with Eqs. (9.3) 
and (9.4) the condition for buildup is 

r„>r+ (n.8) 
or 

M2>7r+(cor-a>0)
2. (11.9) 

For the upper sign exponential, for the lower one linear 
buildup is obtained. Since ju2 is proportional to the in­
version according to Eq. (8.7), the eigenfrequency 
interval in which amplification occurs increases quad-
ratically with the inversion. If n2<yT there is no 
amplification at any frequency. 

If the parameters coo and y for the various oscillators 

Since w(t=tr) is independent of time a steady state is 
reached. The formula above determines the energy of 
the individual oscillators as a function of all the 
parameters involved. We will analyze this complicated 
expression. Let us assume that for the oscillators with 
the greatest value of rM the requirement 

rM<r+ (12.2) 

is just barely satisfied, i.e., TM is very close to I+. We 
would like to know then how w(t=t) varies as a func­
tion of coo. We keep y the same for all modes considered 
(for sake of argument). This will tell us about the energy 
content of the various oscillators in the cavity. It will be 
found that if TM is slightly smaller than T+ for the 
oscillators with the greatest value of 1^, steady-state 
laser action is achieved. 

We have found that the inequality above can be 
written in the form 

M2<Yr+(6>i-coo)2. (12.3) 

and oo i and T for the atoms are known and the rate of 
exponential buildup measured, /x2 can be calculated. As 
time goes on fx2 must decrease and only the less lossy and 
more resonant modes will continue to be built up, until 
finally the buildup stops entirely, fx2 can be obtained as a 
function of time either by following which modes cease 
to take part in the buildup at a particular time or by 
measuring the energy of the least lossy and most 
resonant mode as a function of time. One may follow 
several modes simultaneously to check whether all of 
them can be described by the same \x2. If the \x2 prove to 
be different for different oscillators then the inversion 
has to be dependent on the modes. If this is the case the 
reaction of the oscillators on the atomic system has to be 
calculated.8 

XII. OSCILLATOR ENERGY IN THE STEADY STATE 

We consider the oscillator autocorrelation function for 
TM<r+. If we assume that (r+-IV) (/+*')>> 1 and 
\t—i\<£i-\-i then, asymptotically, the oscillator auto­
correlation becomes a function of only | /— f \. For i— t' 
this function is 

The importance of this inequality is due to the presence 
of ( r + — r j _ 1 in w(t=t). This quantity can be exhibited 
as 

(r+-iv)-i={r+-[iy+(V2)2-i7r 
-(coi-coo)2/^1 '2}-1. (12.4) 

The maximum as a function of the oscillator frequency 
is achieved at coo=wi, and here 

(r+-r/J)-i={r+-[r+
2+(/i/2)2-iTr]"2}-i; 

if coo=coi. (12.5) 

Half of this value is obtained by solving the equation 
(r+-Cr+2+W2)2-iTr-(a,1-a,o72)^«)-1 

=!{r+-[r+
2+(M/2)2-|7r;p}-i (12.6) 

for coo'. Since I \ , « r + we may expand both sides and 
obtain 

(«i-««)y4=l7r-G./2)*. (12.7) 
8 H. Haken and H. Sauermann, Z. Physik 173, 261 (1963). 

1602 ±r, UL\ ±r„ / iyr + 
(±r„)2 

X aL+aN( 

=Fr, (±iV>2 

r+=Fr„+r/2 

r+J 

r+Tiv-r/2 

r /±r„+r. 
+2aJ ( 

o)2+ (r+qFiv+r/2)2 (Q1-uy+ (r+Tr„-r/2)2 

* («i-fi)2+ (IVFIV)2- (r/2)2 

)] 

±r„ 
(±r,)2 

[(fii-Q)2+ (r+=Fr,+r/2)2][(0!-fi)2+ (r+Tr,-r/2)2] 

(fi1-fi)
2+r+

2+(d=r„-r/2)2 

(±r„)2 C(i21-n)2+ (r+Tr„+r/2)2][(o1-o)2+ (r+TrM-r/2)2]. ]}•" >t»(T+-T,)-1. (12.1) 
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Thus the width of (r+-~rM)~1 as a function of the 
oscillator frequency coo is 

2 |co1~co0
, |=€7r-W2)2]1 / 2 . (12.8) 

This shows that the energy content of the oscillators as 
a function of their eigenfrequency coo can be made 
arbitrarily sharp by approaching the limit 

(M/2)2->7r (12.9) 

from the lower side. This function is centered at <oo=coi. 
If 

(M /2)2=7r, (12.10) 

a steady state is never reached for the perfectly resonant 
oscillator with co0=coi, because this last equation is 
equivalent to r M =r + . Then one of the requirements of 
the steady state, namely 

(r+-r / i)^+0»i, (i2.il) 
cannot be satisfied. The time necessary to establish the 
steady state diverges. 

One can demonstrate that among all the functions 
which occur in w(t=t') only (T+—rM)_1 can be a sharp 
function of coo. Among all the quasi-Lorentzian half-
widths only the following could vanish: 

r+ - r , - r /2= -rM-r_ (12.12) 

r+4T,-r/2=+iy-r-, (12.13) 
because (T+—TM) and (T++TM) are both positive num­
bers. When these widths vanish the amplitude of the 
terms in which they occur also vanish and thus these 
terms are entirely absent from Eq. (12.1). 

The widths of the quasi-Lorentzians are not sensitive 
to the variations of TM in the neighborhood of T+. These 
widths are about T for the (T+—TM±r/2) and about 
(4r+d=T/2) for the ( r + +r M ±r /2 ) terms. We see, then, 

and 

that the width of the energy content function of the 
oscillators is identical with the width of (r^-T^)"1 . 

We may, therefore, conclude that the only way to 
energize only the most resonant modes is by increasing 
the inversion until (/x/2)2 almost reaches the value yT. 
Then the width of the energy content curve is 
4ZyT-Qi/2)*yK If 

4[Tr~(M/2)2]1/2«r (12.14) 

is satisfied, where V is the width of spontaneous emis­
sion, laser action is achieved. We call this the energy 
content condition for steady-state laser action. A similar 
criterion was given by Wagner and Birnbaum.5 

XIII. COHERENCE OF THE OSCILLATORS 

According to the theory of partial coherence of Born 
and Wolf9 the coherence of stationary fields is expressed 
by their autocorrelation function. The autocorrelation 
of a stationary field depends only on 11— tr\, by defini­
tion. This corresponds to our steady state. The defini­
tion of coherence has recently been the subject of much 
discussion. Coherence is related to correlation according 
to the definitions of Mandel and Wolf10 and of Glauber.11 

Coherence is related to noise according to Senitzky.12 

For the purposes of the present discussion it is not 
necessary to get involved in this controversy. In 
agreement with the definition of Born and Wolf, 
coherence in this paper refers to the ability of each mode 
to interfere with itself. This is expressed by the oscil­
lator autocorrelation function. 

The oscillator autocorrelation function for the steady 
state is the sum of the wL(t—t') and WN(t—t') terms. 
These expressions both contain exponentially decaying 
terms. The reciprocal time constants of decay are 
(I+-IV), r /2 and (T++rM). The terms are grouped 
accordingly in the following form of w(t—tf): 

16ft2 ±rM 

/ r/±rM+r_\2 1 

\ L\ ±r« / r. =FT„ 

(±rM)2 

(±rM)2 r+J 
f r(Gi-G) sinQ(*'-0+(r+=FiyrT/2) cosQ (*'-/) 

X {aLcostt(t'-t)+aN\ 
I L (Qi-0)H-(r+TrM+r/2)2 

(Oi-O) s inl20 ,-0+(r+
: :FrM~r/2) cosG (*'-/) 

" + 2 e- i72« ' -* ) a i s r 

X 

(0 ! - f i ) 2 +( r + Tr M - r /2 ) 2 

/±rM+r_y [ ( ^ i - ^ + ^ + ^ r ^ ) 2 - (r/2)2] cosQi(/'-0+r(Oi-Q) simV/'-/) (±rM)2-r_2 

[(Q!-a)2+ ( r ^ r ^ r ^ ) 2 ! ^ - ^ (r+=FrM-r/2)2] (±r„)2 
±rtf 

x-
[(Oi-Q)2+r+2+(±rM-r/2)2] cosQiO,-/)+(r+=F2rM)(Oi-o) sinQi (*'-/) 

[(i2x-o)2+ (r+=Fr,+r/2)2][(Q1-o)2+ (r+TrM-r/2)2] i> 
t'>f»(T++T„)-K (13.1) 

9 Max Born and Emil Wolf, Optics (Pergamon Press Inc., New York, 1959). 
10 L. Mandel and E. Wolf, J. Opt. Soc. Am. 51, 815 (1961). 
11 R. J. Glauber, Phys. Rev. 130, 2529 (1963). 
1 2 1. R. Senitzky, Phys. Rev. 128, 2864 (1962). 

i2.il
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One of the three time constants, namely (r /2)"1 , is the 
same as the one for the decay of the atomic current 
autocorrelation function. This is the quantity which 
appears in spontaneous emission. Thus this term ex­
presses the degree of coherence in the oscillator due to 
spontaneous emission. This part is considered to be 
incoherent. The amplitude of the spontaneous term de­
pends on the inversion but its time constant does not. 

The coherent radiation is described by the ( r + — r ^ ) - 1 

time constant term. As rM —» T+ from smaller values the 
degree of coherence increases. For T / t = r + the coherence 
time becomes infinite but we have seen that it takes 
infinite length of time to establish such a steady state. 

Finally the (r+H-r^) - 1 time constant term describes 
the possibly most incoherent part of the radiation. I t 
may, in fact, be more incoherent than the spontaneous 
emission is. I t is interesting to note that the more 
coherent the (T+—T^) -1 part of the radiation becomes 
the more incoherent the ( r + + r ^ ) _ 1 part will be. 

We note that the atomic autocorrelation contributes 
to all three time constant terms. The loss mechanism 
autocorrelation contributes only to the coherent and 
incoherent induced emissions but not to the spontaneous 
emission. This supports the interpretation of the oscil­
lator autocorrelation function in terms of induced and 
spontaneous emissions. The spontaneous emission is due 
to a characteristic of the atoms, namely their current 
autocorrelation, which is assumed to be independent of 
the oscillators. Thus it is also independent of the 
oscillator-loss mechanism coupling. The induced emis­
sion depends on the oscillators themselves which are, in 
turn, influenced by both external systems. Additional 
support for this interpretation can be found in the fact 
that the spontaneous part of the oscillator autocorrela­
tion decays at a rate independent of the oscillator fre­
quency coo and oscillator damping constant 7 because T 
is an independent parameter. The ( ~ r + + r ^ ) _ 1 and 
(—T+—1\)_1 factors in the exponents depend on the 
oscillator frequency through T^ and on the oscillator 
damping constant 7 through both T+ and i y 

The last equation also shows that the most coherent 
term alone contains (F+—T^) -1 in an amplitude factor. 
We have seen that (F+— T^)-1 is a very sharp function 
of the oscillator frequency too if T^ is almost as great as 
T+ is. Thus the most coherent term occurs with the 
greatest amplitude. If this term is considered as a 
function of the oscillator frequency co0, it is found that 
as TM approaches T+ from smaller values both the 
coherence and the amplitude of this term increase. 

XIV. SPECTRAL DISTRIBUTION OF THE 
OSCILLATOR ENERGY 

We have computed the energy content function of the 
oscillators w(t=t') for the steady state before. In order 
to emphasize that this quantity depends, among other 
quantities, on the eigenfrequencies of the oscillators, we 
designate it now by W(COQ). A particular oscillator does 
not, however, execute a purely harmonic motion at its 
eigenfrequency coo. This is due to the coupling of the 
oscillator to the two external systems. The energy of an 
oscillator can be analyzed into harmonic components of 
frequency co. This analysis is expressed by the spectral 
distribution function w(oo). In the function w(u>) the co0 

is a parameter. w(coo) then refers to the total energy of 
each oscillator as it varies from one oscillator to the 
next and w(o)) describes the amplitudes of the various 
frequency components co of one particular oscillator 
with fixed coo-

The spectral distribution of the energy of the indi­
vidual oscillators in the steady state can be found by 
Fourier transforming the corresponding autocorrelation 
functions. We wrote down this function for tf>L I t is 
symmetrical, because, in fact, it only depends on 11— tf \. 
Thus the spectral distribution is given by 

w(co) = 2 / d(jf-t) coxa(t'-t)w(t'-t). (14.1) 

Substituting here Eq. (13.1) for w(t' — t) we obtain 

w(co) = -
1 

1602 ± r A ( 0 - c o ) 2 + ( r + = F r ir+i-v (±r„)2-r_2 1 

±r„ / r+=Fiv (iiv)2 r+. 
f r (Qx-Q) (a-«)+(r+=prM+r/2) (r+=Fr„) 

x aUr+TrvHa* 
I L (n1-o)^+(r+=Fr,+r/2)2 

(fli-o) (n-w)+(r+=Fr„-r/2) (r+=prM)n i 2aN 

x 

(ai-o)s+(r+=Fr„-r/2)* J) (Qi-^y+ (r/2)2 

[r±r„+r_-f [(Qi-o)2+(r+=Fr>1)
2-(r/2)2]r/2+r(o1-o)(Oi-co) \[~1 [L ±iv J C(o1-fi)

2+(r+TrM+r/2)2][(n1-fi)
2+(r+=Fr)t-r/2)2] 

(±rM)2-r_2[(n1-n)2+r+
2+(±rM-r/2)2]r/2+(r=F2r)1)(n1-o)(o1-a.) 

(±r J2 C(fi!-i2)2+ (r+Tr(I+r/2)2][(o1-o)2+ (r+±r„-r/2)2 r»- (14.2) 
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The interpretation of this expression parallels that of 
the autocorrelation function. The first term in the large 
parenthesis belongs to the coherent and incoherent in­
duced emissions. The second one describes the spon­
taneous emission. We note that the spectrum of the 
induced emissions is centered around the eigenfre-
quency of the coupled system 0 while that of the 
spontaneous emission is centered around the atomic 
frequency Qi. 

Investigating the coherent induced emission term it is 
found that as I^—»r+ from the smaller side, by de­
creasing the difference [coo—coi|, not only the energy of 
the oscillator increases with (r+-—I^)-1 but also its 
spectral width becomes smaller [see Eq. (12.1)]. This 
means that an oscillator which is in closer resonance 
with the atoms is not only more highly energized but is 
also more monochromatic. This is exactly what makes 
laser action possible. In fact in the limit r M = r + we 
extract 

Y Y 

lim - =7r6(0-a>) (14.3) 
r +-MQ-o>) 2 +(r + - r M ) 2 

from the first term, which means perfect monochro-
maticity. We mentioned before that in this limit the 
establishment of the steady state would require infinite 
length of time. 

On the basis of the spectral distribution of a resonant 
oscillator we may say that it takes part in steady-state 
laser action if its spectrum is much narrower than it 
would be in spontaneous emission. Since the coherent 
part of the oscillation carries most of the energy, it 
essentially determines the line shape. Thus a condition 
for the participation of an oscillator in steady-state laser 
action may be formulated as 

2 ( r + - r M ) « r ; r + > r M . (14.4) 

This oscillator then has a much narrower line shape in 
the steady-state laser operation than in the spontaneous 
emission. If the above inequality is written for TM just 
slightly smaller than T+ it is equivalent to 

2 | > r - (M/2)2]1/2«[r2+7r]1/2 (14.5) 

for the case of coo=coi. We call this the spectral condition 
for steady-state laser action. This is essentially the same 
as the energy content condition where the energization 
of the oscillators with different eigenfrequencies is con­
sidered. In solid-state lasers 7 « r so that 

2 [ 7 r - ( M /2 ) 2 ] l / 2 «r (14.6) 

and, apart of a factor of 2, this is the same condition as 
the one in (12.14). 

The condition expressed by Eq. (14.4) or (14.5) could 
have been derived already in the previous section. 
There it would have been required that the coherence of 
the oscillator in steady-state laser action should be 
much greater than in spontaneous emission. The two 
formulations are equivalent because the spectral distri­

bution is the Fourier transform of the autocorrelation 
function. 

The width of the incoherent induced emission can 
take on the maximum value ( r+7) when r + =r M . Thus 
the coherent induced emission has the narrowest spectral 
distribution and the incoherent one may be wider than 
the spontaneous emission which has the width T. This 
result is reminiscent to what one obtains in the Heitler 
damping theory.13 External radiation with a narrow 
linewidth may stimulate resonant emission with a 
similarly narrow peak. This peak is superimposed on a 
background which is broader than that of the spontane­
ous emission because of the increase of the total transi­
tion probability. 

The parallelism is imperfect because the Heitler 
damping theory refers to the natural linewidth which 
never appears in our calculation. Thus it happens only 
if the (r+—T^) term is coherent enough that the 
(r^+r^) term becomes more incoherent than the 
spontaneous one. 

The present spectral distribution can be compared 
with that of Wagner and Birnbaum.5 The result of these 
authors cannot be interpreted as a superposition of 
coherent and incoherent induced emissions and of 
spontaneous emission because it contains only one term. 
They separate the atomic dipole moment into the sum 
of spontaneous and an induced moment, an assumption 
we do not have to make. Their cavity oscillators are 
driven by the spontaneous dipoles alone. In reality they 
are also driven by the loss mechanism. 

It is interesting to analyze the spectral distribution 
function from a different point of view. One may ask 
about the variation of intensity of a particular fixed 
spectral component from oscillator to oscillator. Only 
those oscillators are considered for which 1^ is almost 
equal to T+. Then 

1 1 
w(o))^ (14.7) 

( o - « ) 2 + ( r + - r | l )
8 r + - r | l 

is an adequate representation of this dependence. As a 
function of co this is a Lorentzian. For constant co there 
are essentially two ranges of this function. If |0—co | 
» r + ~ r M then it varies like 1/(1+—1^). In this range 
then the energy in a frequency component varies from 
oscillator to oscillator proportionally to the variation of 
the total energy. If |S2—co|<3CT+— Tp then the energy in 
a frequency component varies like 1/(T+—TIX)S. This is 
an extremely narrowly peaked function. It shows that 
the energy output of the laser at a particular frequency 
originates almost exclusively from oscillators which to­
gether with the atoms produce a combined system fre­
quency Q very close to co. At coo', as determined from 
Eq. (12.7), the function l/(r+—IV)3 has already fallen 
to I of its maximum value. The energy content function 
at the same place has reached only \ its maximum value. 

13 W. Heitler, The Quantum Theory of Radiation (Oxford Uni­
versity Press, Oxford, 1954), 3rd ed. 
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XV. MATHEMATICAL GENERALIZATIONS 

A number of assumptions have been made which are 
fundamental to the mathematical approach of this 
paper. They are the following: (1) The currents are 
weak enough so that it is sufficient to go only to second 
order in the coupling constant. (2) The current correla­
tions are practically unaffected by the coupling of the 
atoms to the oscillators. (3) The oscillators are inde­
pendent of each other. 

For the discussion of the buildup assumption (2) had 
to be slightly relaxed; namely, the atomic populations 
had to be allowed to be slow functions of time. 

If the different oscillators are not independent of each 
other, crosscorrelations between different modes arise. 
This leads to crosscoherence between the modes. This 
possibility fits into the mathematical scheme of the 
paper but makes the calculations more difficult. The 
equations of motion of the modes do not separate but 
have to be solved simultaneously. 

If the current correlations are significantly affected by 
the coupling of the atoms to the modes, which is the 
case in gas lasers, equations of motion for the atomic 
current have to be derived. The Lagrangian of Eq. (4.3) 
has to be completed by the addition of terms represent­
ing the atoms as dynamical systems. 

If the currents are very strong, higher order terms in 
the coupling constant become important. This leads to 
the consideration of higher order correlations in the 
system. If the current correlations are unaffected by the 
coupling to the oscillators one may still derive an 
effective action operator, but this will be higher order 
than quadratic in the oscillator coordinates. The equa­
tions of motion will then be at least quadratic in the 
oscillator coordinates. The higher order correlations of 
the oscillator coordinates require a generalization of the 
concept of coherence, as discussed by Glauber.11 

These generalizations all lead to considerable diffi­
culties in carrying out actual calculations. 
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APPENDIX 

1. The Evaluation of the Atomic Current 
Autocorrelation 

The atomic current autocorrelation in Eq. (7.2) is 
written in the Heisenberg picture. The current operators 
depend on time and the suppressed state vectors are 
constant. The evaluation of the expectation value is 
easier in the Dirac picture. In order to transform Eq. 
(7.2) into the Dirac picture the atomic Hamiltonian is 
split into two parts. One part denoted by V, describes 
the interaction between the atoms and the phonons. 
The other part contains the rest of the atomic Hamil­

tonian and includes the interaction with the cavity 
oscillators. If the two picture vectors coincide at the 
time tf, then the relationship of the vectors and the 
operators in the two pictures are 

|*D(/)> = expl"-- f VD (r)dr~\ | **>, 

FD(0 = expf"-- f VD(T)dr'\FB(t) 

(Al) 

Xexpl (A2) 

With this choice of the transformation | ^D( / ) ) contains 
the time dependence due to the interaction between the 
atom and the phonons and Fn(t) contains that between 
atom and cavity oscillators. The autocorrelation for an 
atom, as it can be seen from Eq. (7.2), is 

(JWV))=(Mt)\JD(t) 

XexJ--f VDdr\jD{tf)\^D{tf)). (A3) 

With the introduction of the intermediate states m this 
becomes 

</ (0/ (O>=E» <iM0 \Jn(t) \fDm(t)) 
Xttnm(tf)\JD{t')\*D{t')). (A4) 

The summation is extended over the upper and lower 
electron states. As we have mentioned in Sec. VII, the 
effect of the phonon collisions is a randomization of the 
phases of the electronic state vectors. Taking t as the 
reference time the upper and lower state eigenvectors 
can be exhibited in the form 

|*D«(0>=[*-ir,*-<#l 

+ (l-e-* r '<-<'01 /Vn|^M(O> (A5) 
and 

Î OHDr-*1,1*-1'1 

+ (l-^-*rifr-i ' i ) i /2^«^| r i ) |^)) - (A 6) 

4/r is the time constant of phase randomization, h* and 
h" are the randomized phases. The state vector of an 
atom is 

\ypD{t))=ai\tDi(t))+au\4,DU(t)), (A7) 

where ai and au are constant complex amplitudes. The 
substitution of Eqs. (A5)-(A7) into (A4) leads to 

</(0/(O>=ki|2^*r,^,/,<^|/(0l^«X^|/(OI^> 

x<*,|/(01*.>. (A8) 
The eigenvectors are always taken at the reference time 
and are therefore constants. In this formula the time 
ordering is such that t>t' and thus A++(t—t') is being 
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calculated. If the energy difference between the upper weak coupling. Then 
and lower levels is taken to be Mix then, in view of Eqs. 
(7.2) and (7.3), Eq. (7.7) is obtained. The opposite time 
ordering leads to Eq. (7.6). r 

r/«o2+«i2\: =4(—) 
2. The Poles of the Fourier Transformed 

Green's Function 

The poles of the Fourier transformed Green's 
function, 

c(r) • [• 
•f2-iTf+coo2-

OiV 

sV+(r/2)2-;rr-r: =?r 

2 / [2(a>o2+"i2)]1/2J 

By substitution into the quartic equation the 

•[a(l+^r/2fi)+ira+|(wo2-coi2)]+OiV=0 

quadratic equation is obtained with 

O2=i(coo2+coi2). 
One finds that 

are the zeros of the bracketed expression. Exact and 2 ^ ' LiM"rvT ; / ^ 2̂ 2/4.11/2 
convenient solutions can be obtained only in a few . , v 1 0; / J , 

. , and thus 
special cases. 

In general, the f = ± 0 -
ily+T 

21 2 W?)-rail (f2+nr-co0
2) (f2+^rf-co1

2)+o1v=o 
quartic equation has to be solved, where 

co1
2=121

2+(T/2)2. 

The solution can be attempted in the form 

f2=K"o2+coi2)+a, 

where a is much smaller than the first term due to the determines the four poles with sufficient accuracy. 

In the neighborhood of the resonance coi+a>o~2&, so 
that 

r=±o—{i(T+r)±[M2+(7-r)2/4-(co1-coo)2]^} 
2 


